

<u>Example</u>

The value of the digit '1' is 1	000 000
The value of the digit '2' is	2 00 000
The value of the digit '3' is	3 0 000
The value of the digit '4' is	4 000

5/2 <u>Round numbers to nearest 10, 100, 1000, 100000</u>

Example 1- Round 342 679 to the nearest 10 000

- Step 1 Find the 'round-off digit' 4
 - Step 2 Look one digit to the right of 4 2

<u>5 or more</u>? NO - leave 'round off digit' unchanged - Replace following digits with zeros

ANSWER - 340 000

Example 2- Round 453 679 to the nearest 100 000

- Step 1 Find the 'round-off digit' 4
- Step 2 Look one digit to the right 5

<u>5 or more</u>? YES – add one to 'round off digit' - Replace following digits with zeros

ANSWER - 500 000

A number line is very useful for negative numbers. The number line below shows: 3 5 4 Т 4 3 5 The seven main symbols I = 1 V = 5 Other useful ones include: X = 10 IV = 4L = 50 IX = 9 C = 100XL = 40 D = 500XC = 90 M = 1000

5/5 Written methods for addition

Line up the digits in the correct columns
Start from RIGHT to LEFT

e.g. 48 + 284 + 9H T U 4 8 2 8 4 $\frac{1}{2} \frac{2}{9} + \frac{3}{3} \frac{4}{1}$

5/5 Written methods for subtraction

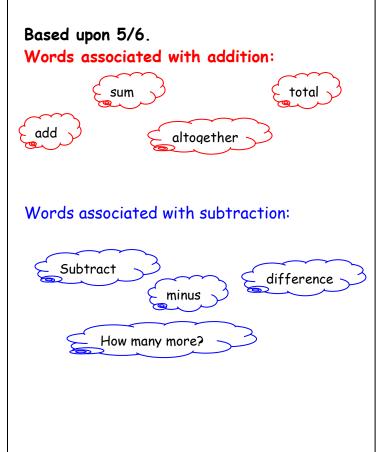
- Line up the digits in the correct columns
- Start from RIGHT to LEFT

e.g. 645 - 427

HTU 6³4⁄4¹5 <u>42</u>7-218

5/6 Mental methods for addition

•	Star	t from LEFT to RIGHT	
Exe	ample	<u>1</u> - think of:	
45	+ 32	as <mark>45</mark> + <mark>3</mark> 0 + 2	
٠	But	in your head say:	
45	75	77	


<u>Example 2</u> - think of: 1236 + 415 as 1236 + 400 + 10 + 5 • But in your head say: 1236 1636 1646 1651

5/6 Mental methods for subtraction

Example 1 - think of: 56 - 32 as 56 - 30 - 2 • But in your head say: 56 26 24

<u>Example 2</u> - think of: **1236** - **415** as **1236** - **400** - **10** - 5 • But in your head say: **1236 836 826 821**

5/7 <u>Multi-step problems</u>

5/8 <u>Multiples & factors</u>

 <u>FACTORS</u> are what divides exactly into a number

e.g. Factors of 12 are:

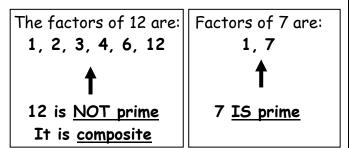
Factors of 18 are:

1	12	
2	6	
3	4	

1	18
2	9
3	6

The common factors of 12 & 18 are: 1, 2, 3, 6, <u>The Highest Common Factor is: 6</u>

 MULTIPLES
 are the times table answers


 e.g. Multiples of 5 are:
 Multiples of 4 are:

 5 10
 15
 20
 25

The Lowest Common Multiple of 5 and 4 is: 20

5/9 Prime numbers

Prime numbers have only TWO factors

Prime numbers to 20

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20

The number '1' is NOT prime

5/10 Multiplication using a formal method	5/10 Division using a formal method	
• By a ONE-DIGIT number	• By a ONE-DIGIT number	
e.g. 3561 x 7 <u>COLUMN METHOD</u> 3561 <u>7x</u> 24927	e.g. 9138 ÷ 6 <u>1 5 2 6</u> 6)9 ³ 1 ¹ 3 ¹ 8 • By a TWO-DIGIT number	
<u>24927</u> 3 4	• By a 140-DIGIT humber	
e.g. 3561 x 7 <u>GRID METHOD</u>	e.g. 4928 ÷ 32 <u>SAME METHOD</u> (Except write down some of your tables down first)	
3000 500 60 7	32 64 0154	
7 21000 3500 420 49 21000 + 3500 + 420 + 49 = 24927	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	4928 ÷ 32 = <u>154</u>	
• By a TWO-DIGIT number e.g. 152 × 34 <u>COLUMN METHOD</u> 152 <u>34×</u> 608 (×4) <u>4560</u> (×30) <u>5168</u>	e.g. 4928 ÷ 32 <u>ALTERNATE METHOD</u> • Divide • Multiply • Subtract • Bring down - Make a new number • Divide 0 154 32 4928 $-32 \downarrow$ 172	
e.g. 152 x 34 <u>GRID METHOD</u>	$-\frac{160}{128} \downarrow$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- <u>1 2 8</u> 0 0 0 4928 ÷ 32 = <u>154</u>	

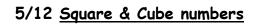
5/11 <u>Multiply & divide by 10, 100, 1000</u>

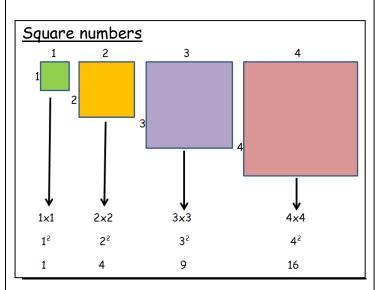
• By moving the decimal point To <u>multiply</u> by 10 move the dp ONE place RIGHT

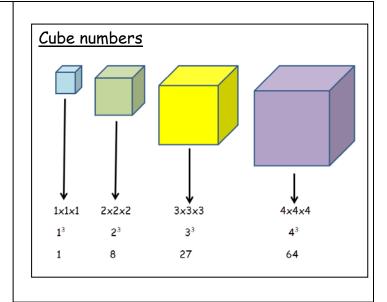
e.g.
$$13^{1} \times 10 = 130$$

 $3.4 \times 10 = 34$

To divide by 10 move the dp ONE place LEFT

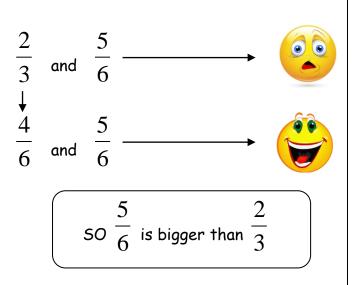

e.g. $13 \div 10 = 1.3$ $\sqrt{3}.4 \div 10 = 0.34$

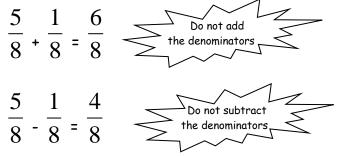

• By moving the digits

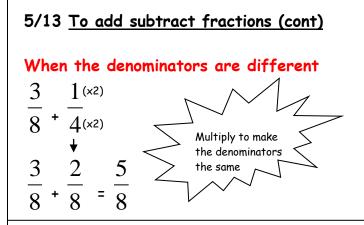

To multiply by 10 move the digits ONE place LEFT

e.g. 3.52 × 10 = 3 5 . 2

To multiply or divide by 100 move TWO places To multiply or divide by 1000 move THREE places





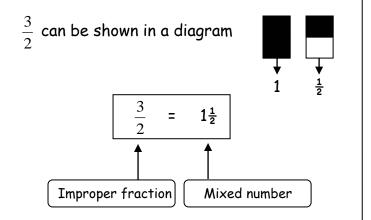

5/13 Fractions

To compare fractions
the denominators must be the same

• To add and subtract fractions When the denominators are the same

5/14 Equivalent fractions

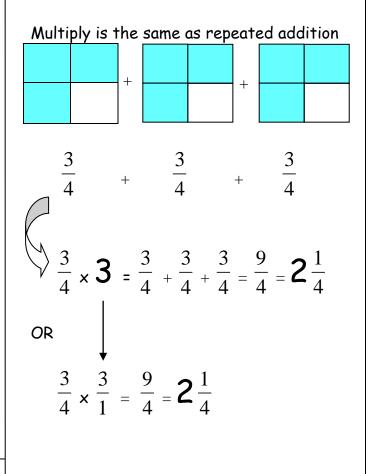
These fractions are the same but can be drawn and written in different ways

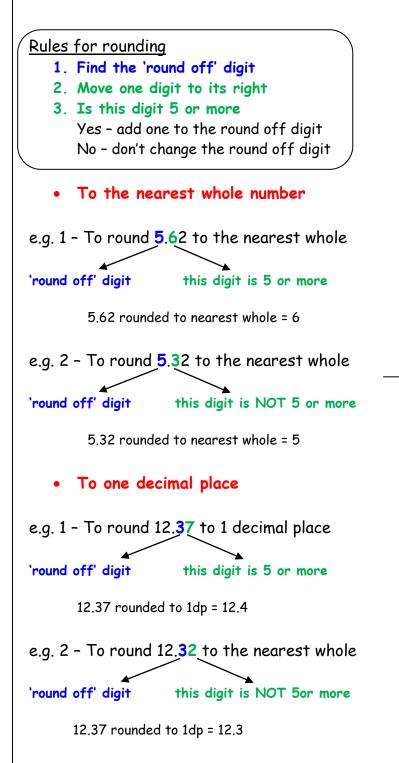

	=		
$\frac{3}{4}$	=	$\frac{12}{10}$	
$\frac{3^{(x4)}}{4^{(x4)}}$	=	$\frac{12}{10}$	

Fractions can also be divided to make the fraction look simpler – this is called CANCELLING or LOWEST FORM

 $\frac{12}{16}^{(\div 4)}_{(\div 4)} = \frac{3}{4}$

5/15 Mixed & improper fractions


• An improper fraction is top heavy & can be changed into a mixed number


• A mixed number can be changed back into an improper fraction

$$\mathbf{1}_{\mathbf{x}^{2}}^{+1} = \frac{3}{2}$$

 $\mathbf{2}^{+3} = \frac{11}{2}$

5/16 <u>Multiply fractions</u>

5/17 Round decimals

The value of each digit is shown in the table

hundreds	tens	units	•	tenths	hundredths	thousandths
3	5	2	•	6	1	7
300	50	2		$\frac{6}{10}$	$\frac{1}{100}$	$\frac{7}{1000}$
352			$\frac{61}{100}$		$\frac{7}{1000}$	
352					$\frac{617}{1000}$	_

5/18 Order decimals

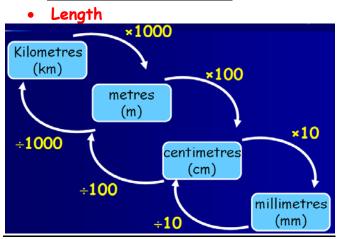
Example - To order 0.28, 0.3, 0.216

- Write them under each other
- Fill gaps with zeros
- Then order them
- •
- 0.28 ----- 0.280
- 0.3 ----- 0.300

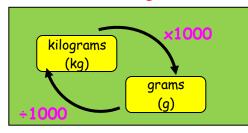
S	largest		
Order:	0.216	0.28	0.3

5/18 Read & write decimals

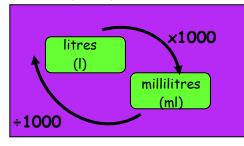
5/19 Decimal & Percentage equivalents


Learn

Fraction	Decimal	Percentage
$\frac{1}{2}$	0.5	50%
$\frac{1}{4}$	0.25	25%
$\frac{1}{5}$	0.2	20%
$\frac{1}{10}$	0.1	10%
$\frac{1}{100}$	0.01	1%


Some fractions have to be changed to be 'out of 100'

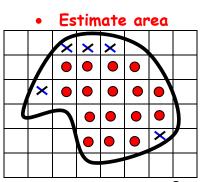
11(×4)	-	44	= 0.44 = 44%
25 _(x4)	-	100	- 0.11 - 11/8


5/20 <u>Convert metric measure</u>


• Mass or weight

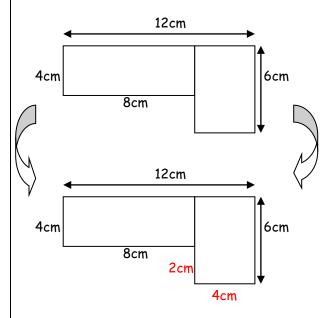
• Capacity or volume

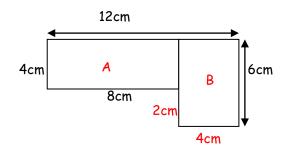
5/20 Imperial measure

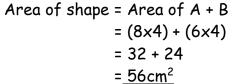


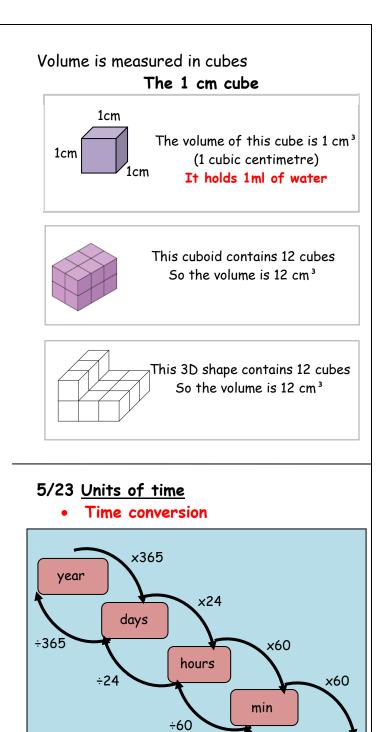
pint and three quarters

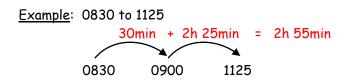
• A gallon is about 4.5 litres


5/21 <u>Area & Perimeter</u>

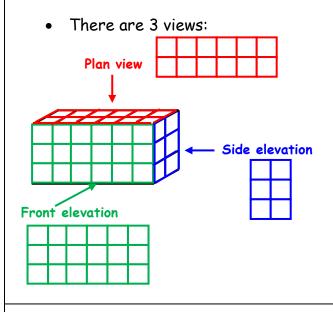

Number of whole squares(\bigcirc) = 16 Number of $\frac{1}{2}$ or more (\times) = 5 Estimated area = 21 squares


• Shapes composed of rectangles


Put on all missing lengths first For perimeter - ADD all lengths round outside For area - split into rectangles & add them together


<u>Perimeter = 12 + 6 + 4 + 2 + 8 + 4 = 36cm</u>

• **Time intervals** Always go to the next whole hour first



÷60

sec

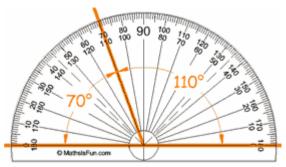
5/24 2D representations of 3D shapes

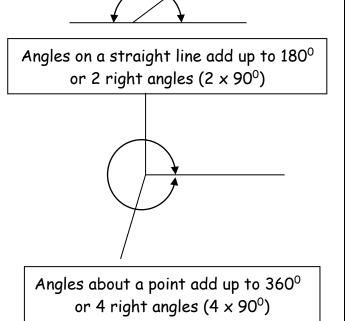
5/22 <u>Volume</u>

5/25 Angles

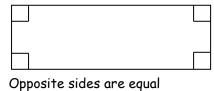
• Types of angles

Acute (less than 90°) **Obtuse** (Between 90° & 180°)

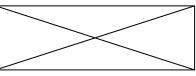



Reflex (Between 180° & 360°)

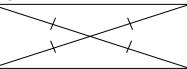
• Measure and draw angles



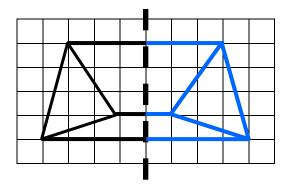
To be sure, count the number of degrees between the two arms of the angle

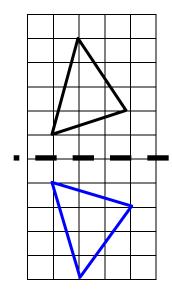


5/27 Properties of the rectangle

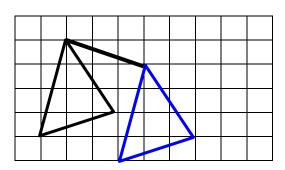

- A rectangle is a quadrilateral (4 sided shape)
- All angles are 90°

- Opposite sides are parallel
- Diagonals are equal

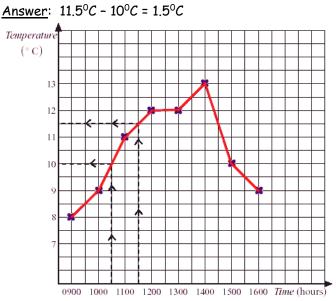

Diagonals bisect each other (cut in half)


• A square is a special rectangle 5/28 <u>Reflection</u>

5/26 Angles

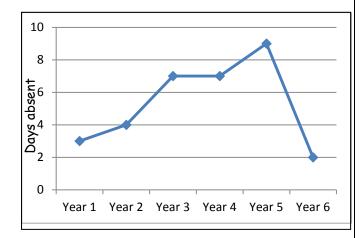

• Reflection in a vertical line

• Reflection in a horizontal line


5/28 Translation - 4 right & 1 down

- In reflection and translation the shapes remain the same size and shape – CONGRUENT
- In reflection the shape is flipped over
- In translation the shape stays the same way up

• Find the difference


<u>Example 1</u>: What was the difference in temperature between 1030 and 1130?

• Find the sum of the data

Example: What was the total number of days absent over the 6 years?

<u>Answer</u>: 3 + 4 + 7 + 7 + 9 + 2 = 32 days

5/29 Line graphs

5/30 Interpret information in tables

• Distance table

Example: Find the distance between Leeds and York Answer: 40miles

Hull				
100	Leeds			
162	73	Manchester		
110	60	65	Sheffield	
63	40	118	95	York

Timetable

Example: How long is the film? Answer: 1.10 - 2.35 = 1h 25min = 85min

6.30am	Educational programme
7.00	Cartoons
7.25	News and weather
8.00	Wildlife programme
9.00	Children's programme
11.30	Music programme
12.30pm	Sports programme
1.00	News and weather
1.10 - 2.35pm	Film

• Table of results of goals scored

Example: Did boys or girls score the most goals? Answer: Boys: 6+3+3+6=18 Girls: 7+5=12 Boys scored the most goals

	Game 1	Game 2	Game 3	Game 4	Game 5	Frequency
Peter	1	0	0	2	3	6
John	0	2	1	0	0	3
Ryan	1	0	1	1	0	3
Claire	2	0	2	1	2	7
Bill	3	1	1	0	1	6
Susan	0	1	3	1	0	5